- atomless Boolean algebra
- неперервна (безатомна) булева алгебра
English-Ukrainian technical dictionary. 2015.
English-Ukrainian technical dictionary. 2015.
Boolean algebras canonically defined — Boolean algebras have been formally defined variously as a kind of lattice and as a kind of ring. This article presents them more neutrally but equally formally as simply the models of the equational theory of two values, and observes the… … Wikipedia
Forcing (mathematics) — For the use of forcing in recursion theory, see Forcing (recursion theory). In the mathematical discipline of set theory, forcing is a technique invented by Paul Cohen for proving consistency and independence results. It was first used, in 1963,… … Wikipedia
Turing degree — Post s problem redirects here. For the other Post s problem , see Post s correspondence problem. In computer science and mathematical logic the Turing degree or degree of unsolvability of a set of natural numbers measures the level of algorithmic … Wikipedia
List of first-order theories — In mathematical logic, a first order theory is given by a set of axioms in somelanguage. This entry lists some of the more common examples used in model theory and some of their properties. PreliminariesFor every natural mathematical structure… … Wikipedia
Whitehead's point-free geometry — In mathematics, point free geometry is a geometry whose primitive ontological notion is region rather than point. Two axiomatic systems are set out below, one grounded in mereology, the other in mereotopology and known as connection theory… … Wikipedia
Quantifier elimination — is a technique in mathematical logic, model theory, and theoretical computer science.We say that a given theory has quantifier elimination if for every sentence with quantification there exists an equivalent (modulo the theory) sentence without… … Wikipedia
Martin's axiom — In the mathematical field of set theory, Martin s axiom, introduced by Donald A. Martin and Robert M. Solovay (1970), is a statement which is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, so… … Wikipedia